Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Front Plant Sci ; 15: 1369650, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628361

RESUMEN

Powdery mildew disease (PMD) is caused by the obligate biotrophic fungus Microsphaera diffusa Cooke & Peck (M. diffusa) and results in significant yield losses in soybean (Glycine max (L.) Merr.) crops. By identifying disease-resistant genes and breeding soybean accessions with enhanced resistance, we can effectively mitigate the detrimental impact of PMD on soybeans. We analyzed PMD resistance in a diversity panel of 315 soybean accessions in two locations over 3 years, and candidate genes associated with PMD resistance were identified through genome-wide association studies (GWAS), haplotype analysis, qRT-PCR, and EMS mutant analysis. Based on the GWAS approach, we identified a region on chromosome 16 (Chr16) in which 21 genes form a gene cluster that is highly correlated with PMD resistance. In order to validate and refine these findings, we conducted haplotype analysis of 21 candidate genes and indicated there are single nucleotide polymorphisms (SNPs) and insertion-deletions (InDels) variations of Glyma.16G214000, Glyma.16G214200, Glyma.16G215100 and Glyma.16G215300 within the coding and promoter regions that exhibit a strong association with resistance against PMD. Subsequent structural analysis of candidate genes within this cluster revealed that in 315 accessions, the majority of accessions exhibited resistance to PMD when Glyma.16G214300, Glyma.16G214800 and Glyma.16G215000 were complete; however, they demonstrated susceptibility to PMD when these genes were incomplete. Quantitative real-time PCR assays (qRT-PCR) of possible candidate genes showed that 14 candidate genes (Glyma.16G213700, Glyma.16G213800, Glyma.16G213900, Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214500, Glyma.16G214585, Glyma.16G214669, Glyma.16G214700, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300) were involved in PMD resistance. Finally, we evaluated the PMD resistance of mutant lines from the Williams 82 EMS mutations library, which revealed that mutants of Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300, exhibited sensitivity to PMD. Combined with the analysis results of GWAS, haplotypes, qRT-PCR and mutants, the genes Glyma.16G214000, Glyma.16G214200, Glyma.16G214300, Glyma.16G214800, Glyma.16G215000, Glyma.16G215100 and Glyma.16G215300 were identified as highly correlated with PMD resistance. The candidate genes identified above are all NLR family genes, and these discoveries deepen our understanding of the molecular basis of PMD resistance in soybeans and will be useful for guiding breeding strategies.

2.
Nucleus ; 15(1): 2328719, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38488152

RESUMEN

Heterochromatin is an organizational property of eukaryotic chromosomes, characterized by extensive DNA and histone modifications, that is associated with the silencing of transposable elements and repetitive sequences. Maintaining heterochromatin is crucial for ensuring genomic integrity and stability during the cell cycle. During meiosis, heterochromatin is important for homologous chromosome synapsis, recombination, and segregation, but our understanding of meiotic heterochromatin formation and condensation is limited. In this review, we focus on the dynamics and features of heterochromatin and how it condenses during meiosis in plants. We also discuss how meiotic heterochromatin influences the interaction and recombination of homologous chromosomes during prophase I.


Asunto(s)
Centrómero , Heterocromatina , Heterocromatina/genética , Meiosis/genética , Emparejamiento Cromosómico
3.
New Phytol ; 241(5): 2059-2074, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38197218

RESUMEN

Thermo-sensitive genic male sterile (TGMS) lines are the core of two-line hybrid rice (Oryza sativa). However, elevated or unstable critical sterility-inducing temperatures (CSITs) of TGMS lines are bottlenecks that restrict the development of two-line hybrid rice. However, the genes and molecular mechanisms controlling CSIT remain unknown. Here, we report the CRITICAL STERILITY-INDUCING TEMPERATURE 2 (CSIT2) that encodes a really interesting new gene (RING) type E3 ligase, controlling the CSIT of thermo-sensitive male sterility 5 (tms5)-based TGMS lines through ribosome-associated protein quality control (RQC). CSIT2 binds to the large and small ribosomal subunits and ubiquitinates 80S ribosomes for dissociation, and may also ubiquitinate misfolded proteins for degradation. Mutation of CSIT2 inhibits the possible damage to ubiquitin system and protein translation, which allows more proteins such as catalases to accumulate for anther development and inhibits abnormal accumulation of reactive oxygen species (ROS) and premature programmed cell death (PCD) in anthers, partly rescuing male sterility and raised the CSIT of tms5-based TGMS lines. These findings reveal a mechanism controlling CSIT and provide a strategy for solving the elevated or unstable CSITs of tms5-based TGMS lines in two-line hybrid rice.


Asunto(s)
Infertilidad Masculina , Oryza , Masculino , Humanos , Temperatura , Oryza/genética , Ubiquitina , Ubiquitina-Proteína Ligasas/genética , Infertilidad Vegetal/genética
4.
Plant Cell ; 36(4): 1098-1118, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38092516

RESUMEN

DNA methylation is an important epigenetic mark implicated in selective rRNA gene expression, but the DNA methylation readers and effectors remain largely unknown. Here, we report a protein complex that reads DNA methylation to regulate variant-specific 45S ribosomal RNA (rRNA) gene expression in Arabidopsis (Arabidopsis thaliana). The complex, consisting of METHYL-CpG-BINDING DOMAIN PROTEIN5 (MBD5), MBD6, ALPHA-CRYSTALLIN DOMAIN PROTEIN15.5 (ACD15.5), and ACD21.4, directly binds to 45S rDNA. While MBD5 and MBD6 function redundantly, ACD15.5 and ACD21.4 are indispensable for variant-specific rRNA gene expression. These 4 proteins undergo phase separation in vitro and in vivo and are interdependent for their phase separation. The α-crystallin domain of ACD15.5 and ACD21.4, which is essential for their function, enables phase separation of the complex, likely by mediating multivalent protein interactions. The effector MICRORCHIDIA6 directly interacts with ACD15.5 and ACD21.4, but not with MBD5 and MBD6, and is recruited to 45S rDNA by the MBD-ACD complex to regulate variant-specific 45S rRNA expression. Our study reveals a pathway in Arabidopsis through which certain 45S rRNA gene variants are silenced, while others are activated.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , alfa-Cristalinas , Arabidopsis/genética , Arabidopsis/metabolismo , Genes de ARNr , Metilación de ADN/genética , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Ribosómico/genética , ADN Ribosómico/metabolismo , alfa-Cristalinas/genética , alfa-Cristalinas/metabolismo
5.
Proc Natl Acad Sci U S A ; 120(52): e2310542120, 2023 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-38134200

RESUMEN

Reciprocal exchanges of DNA between homologous chromosomes during meiosis, or crossovers (COs), shuffle genetic information in gametes and progeny. In many eukaryotes, the majority of COs (class I COs) are sensitive to a phenomenon called interference, which influences the occurrence of closely spaced double COs. Class I COs depend on a group of factors called ZMM (Zip, Msh, Mer) proteins including HEI10 (Human Enhancer of Invasion-10). However, how these proteins are recruited to class I CO sites is unclear. Here, we show that HEI10 forms foci on chromatin via a liquid-liquid phase separation (LLPS) mechanism that relies on residue Ser70. A HEI10S70F allele results in LLPS failure and a defect in class I CO formation. We further used immunoprecipitation-mass spectrometry to identify RPA1a (Replication Protein A 1) as a HEI10 interacting protein. Surprisingly, we find that RPA1a also undergoes phase separation and its ubiquitination and degradation are directly regulated by HEI10. We also show that HEI10 is required for the condensation of other class I CO factors. Thus, our results provide mechanistic insight into how meiotic class I CO formation is controlled by HEI10 coupling LLPS and ubiquitination.


Asunto(s)
Proteínas de Arabidopsis , Intercambio Genético , Meiosis , Cromosomas , Meiosis/genética , Separación de Fases , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo
6.
Nat Commun ; 14(1): 7763, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38012183

RESUMEN

Genome topology is tied to R-loop formation and genome stability. However, the regulatory mechanism remains to be elucidated. By establishing a system to sense the connections between R-loops and genome topology states, we show that inhibiting DNA topoisomerase 1 (TOP1i) triggers the global increase of R-loops (called topoR-loops) and DNA damages, which are exacerbated in the DNA damage repair-compromised mutant atm. A suppressor screen identifies a mutation in POL2A, the catalytic subunit of DNA polymerase ε, rescuing the TOP1i-induced topoR-loop accumulation and genome instability in atm. Importantly we find that a highly conserved junction domain between the exonuclease and polymerase domains in POL2A is required for modulating topoR-loops near DNA replication origins and facilitating faithful DNA replication. Our results suggest that DNA replication acts in concert with genome topological states to fine-tune R-loops and thereby maintain genome integrity, revealing a likely conserved regulatory mechanism of TOP1i resistance in chemotherapy for ATM-deficient cancers.


Asunto(s)
Arabidopsis , Humanos , Arabidopsis/genética , Estructuras R-Loop/genética , ADN Polimerasa II/genética , Replicación del ADN/genética , Mutación , Daño del ADN , Inestabilidad Genómica/genética
7.
Proc Natl Acad Sci U S A ; 120(42): e2310177120, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37816061

RESUMEN

Centromere repositioning refers to a de novo centromere formation at another chromosomal position without sequence rearrangement. This phenomenon was frequently encountered in both mammalian and plant species and has been implicated in genome evolution and speciation. To understand the dynamic of centromeres on soybean genome, we performed the pan-centromere analysis using CENH3-ChIP-seq data from 27 soybean accessions, including 3 wild soybeans, 9 landraces, and 15 cultivars. Building upon the previous discovery of three centromere satellites in soybean, we have identified two additional centromere satellites that specifically associate with chromosome 1. These satellites reveal significant rearrangements in the centromere structures of chromosome 1 across different accessions, consequently impacting the localization of CENH3. By comparative analysis, we reported a high frequency of centromere repositioning on 14 out of 20 chromosomes. Most newly emerging centromeres formed in close proximity to the native centromeres and some newly emerging centromeres were apparently shared in distantly related accessions, suggesting their emergence is independent. Furthermore, we crossed two accessions with mismatched centromeres to investigate how centromere positions would be influenced in hybrid genetic backgrounds. We found that a significant proportion of centromeres in the S9 generation undergo changes in size and position compared to their parental counterparts. Centromeres preferred to locate at satellites to maintain a stable state, highlighting a significant role of centromere satellites in centromere organization. Taken together, these results revealed extensive centromere repositioning in soybean genome and highlighted how important centromere satellites are in constraining centromere positions and supporting centromere function.


Asunto(s)
Fabaceae , Glycine max , Centrómero/genética , Fabaceae/genética , Glycine max/genética
9.
Mol Plant ; 16(10): 1695-1709, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37743625

RESUMEN

Two-line hybrid breeding can fully utilize heterosis in crops. In thermo-sensitive genic male sterile (TGMS) lines, low critical sterility-inducing temperature (CSIT) is vital to safeguard the production of two-line hybrid seeds in rice (Oryza sativa), but the molecular mechanism determining CSIT is unclear. Here, we report the cloning of CSIT1, which encodes an E3 ubiquitin ligase, and show that CSIT1 modulates the CSIT of thermo-sensitive genic male sterility 5 (tms5)-based TGMS lines through ribosome-associated quality control (RQC). Biochemical assays demonstrated that CSIT1 binds to the 80S ribosomes and ubiquitinates abnormal nascent polypeptides for degradation in the RQC process. Loss of CSIT1 function inhibits the possible damage of tms5 to the ubiquitination system and protein translation, resulting in enhanced accumulation of anther-related proteins such as catalase to suppress abnormal accumulation of reactive oxygen species and premature programmed cell death in the tapetum, thereby leading to a much higher CSIT in the tms5-based TGMS lines. Taken together, our findings reveal a regulatory mechanism of CSIT, providing new insights into RQC and potential targets for future two-line hybrid breeding.


Asunto(s)
Infertilidad , Oryza , Temperatura , Oryza/genética , Ubiquitina-Proteína Ligasas/genética , Fitomejoramiento , Ribosomas , Infertilidad Vegetal/genética
10.
Methods Mol Biol ; 2686: 219-239, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37540360

RESUMEN

Meiosis is a specialized cell division that halves the number of chromosomes following a single round of DNA replication, thus leading to the generation of haploid gametes. It is essential for sexual reproduction in eukaryotes. Over the past several decades, with the well-developed molecular and cytogenetic methods, there have been great advances in understanding meiosis in plants such as Arabidopsis thaliana and maize, providing excellent references to study meiosis in other plants. A chapter in the previous edition described molecular cytological methods for studying Arabidopsis meiosis in detail. In this chapter, we focus on methods for studying meiosis in soybean (Glycine max), lettuce (Lactuca sativa), and maize (Zea mays). Moreover, we include the method that was recently developed for examination of epigenetic modifications, such as DNA methylation and histone modifications on meiotic chromosomes in plants.


Asunto(s)
Arabidopsis , Zea mays , Zea mays/genética , Glycine max/genética , Lactuca/genética , Cromosomas , Meiosis/genética , Arabidopsis/genética , Plantas/genética
11.
Nat Commun ; 14(1): 5044, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598222

RESUMEN

Meiotic recombination requires the specific RecA homolog DMC1 recombinase to stabilize strand exchange intermediates in most eukaryotes. Normal DMC1 levels are crucial for its function, yet the regulatory mechanisms of DMC1 stability are unknown in any organism. Here, we show that the degradation of Arabidopsis DMC1 by the 26S proteasome depends on F-box proteins RMF1/2-mediated ubiquitination. Furthermore, RMF1/2 interact with the Skp1 ortholog ASK1 to form the ubiquitin ligase complex SCFRMF1/2. Genetic analyses demonstrate that RMF1/2, ASK1 and DMC1 act in the same pathway downstream of SPO11-1 dependent meiotic DNA double strand break formation and that the proper removal of DMC1 is crucial for meiotic crossover formation. Moreover, six DMC1 lysine residues were identified as important for its ubiquitination but not its interaction with RMF1/2. Our results reveal mechanistic insights into how the stability of a key meiotic recombinase that is broadly conserved in eukaryotes is regulated.


Asunto(s)
Arabidopsis , Meiosis , Arabidopsis/genética , Eucariontes , Lisina , Recombinasas/genética
12.
Foods ; 12(10)2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37238834

RESUMEN

The selection of base liquor plays a crucial role in the flavor of soaked greengage wine. This study aimed to investigate the effects of different base liquor treatments on the physicochemical characteristics and aroma composition of greengage wine. We carried out a comprehensive analysis using HPLC for the determination of organic acids and GC-MS for the determination of volatile aroma compounds, combined with sensory evaluation. The results showed that the red and yellow colors were the darkest in the high-alcohol group, while the citric acid content was the highest in the sake group (21.95 ± 2.19 g/L). In addition, the greengage wine steeped in 50% edible alcohol had more terpenes, a significantly higher concentration of acid-lipid compounds, and a more intense aroma compared to that of the low-alcohol group, whose typical aroma compounds were greatly reduced. The sensory results showed that the greengage wine treated with baijiu had a distinct alcoholic flavor, while almond flavors were more intense in the greengage wine treated with 15% edible alcohol. In this study, base liquor was used as the main influencing factor to provide new research ideas for the flavor optimization of soaked greengage wine.

13.
Phys Rev E ; 107(3-2): 035304, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37072959

RESUMEN

Almost every quantum circuit is built with two-qubit gates in the current stage, which are crucial to the quantum computing in any platform. The entangling gates based on Mølmer-Sørensen schemes are widely exploited in the trapped-ion system, with the utilization of the collective motional modes of ions and two laser-controlled internal states, which are served as qubits. The key to realize high-fidelity and robust gates is the minimization of the entanglement between the qubits and the motional modes under various sources of errors after the gate operation. In this work, we propose an efficient numerical method to search high-quality solutions for phase-modulated pulses. Instead of directly optimizing a cost function, which contains the fidelity and the robustness of the gates, we convert the problem to the combination of linear algebra and the solution to quadratic equations. Once a solution with the gate fidelity of 1 is found, the laser power can be further reduced while searching on the manifold where the fidelity remains 1. Our method largely overcomes the problem of the convergence and is shown to be effective up to 60 ions, which suffices the need of the gate design in current trapped-ion experiments.

14.
Plant Cell ; 35(6): 2316-2331, 2023 05 29.
Artículo en Inglés | MEDLINE | ID: mdl-36856605

RESUMEN

Apurinic/apyrimidinic (AP) sites are one of the most abundant DNA lesions and are mainly repaired by AP endonucleases (APEs). While most eukaryotic genomes encode two APEs, plants usually possess three APEs, namely APE1L, APE2, and ARP. To date, the biological relevance and functional divergence of plant APEs are unclear. Here, we show that the three plant APEs have ancient origins, with the APE1L clade being plant-specific. In Arabidopsis thaliana, simultaneously mutating APE1L and APE2, but not ARP alone or in combination with either APE1L or APE2, results in clear developmental defects linked to genotoxic stress. Genetic analyses indicated that the three plant APEs have different substrate preferences in vivo. ARP is mainly responsible for AP site repair, while APE1L and APE2 prefer to repair 3'-blocked single-stranded DNA breaks. We further determined that APEs play an important role in DNA repair and the maintenance of genomic integrity in meiotic cells. The ape1l ape2 double mutant exhibited a greatly enhanced frequency of sporulation 1 (SPO11-1)-dependent and SPO11-1-independent double-stranded DNA breaks. The DNA damage response (DDR) was activated in ape1l ape2 to trigger pollen abortion. Our findings suggest functional divergence of plant APEs and reveal important roles of plant APEs during vegetative and reproductive development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Hominidae , Animales , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Reparación del ADN/genética , Daño del ADN/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Endonucleasas/genética , Hominidae/metabolismo , Proteínas de Arabidopsis/genética
15.
Arch Gynecol Obstet ; 308(1): 143-148, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36966428

RESUMEN

OBJECTIVE: Ectopic pregnancy is a life-threatening disease and is an important cause of pregnancy-related mortality. MTX is the primary conservative treatment medicine of ectopic pregnancy, and mifepristone is also a promising medicine. Through studying the ectopic cases at the third affiliated hospital of Sun Yat-Sen University, the study aims to analyze the indication and treatment outcome predictors of mifepristone. METHODS: The data of 269 ectopic pregnancy cases treated with mifepristone during the year 2011-2019 were retrospectively collected. Logistic-regression analysis was used to analyze the factors affiliated with the treatment outcome of mifepristone. Then ROC curve was used to analyze the indication and predictors. RESULTS: Through logistic-regression analysis, HCG is the only factor related to the treatment outcome of mifepristone. The AUC of ROC curve predicting treatment outcome with pre-treatment HCG is 0.715, and the cutoff value of ROC curve is 372.66 (sensitivity 0.752, specificity 0.619). The AUC of 0/4 ratio predicting the treatment outcome is 0.886, and the cutoff value is 0.3283 (sensitivity 0.967, specificity 0.683). The AUC of 0/7 ratio is 0.947, and the cutoff value is 0.3609 (sensitivity 1, specificity 0.828). CONCLUSIONS: Mifepristone can be used to treat ectopic pregnancy. HCG is the only factor related to the treatment outcome of mifepristone. Patients with HCG less than 372.66 U/L can be treated by mifepristone. If HCG descends more than 67.18% on the 4th day or 63.91% on the 7th day, it is more likely to have a successful treatment outcome. It is more precise to retest on the 7th day.


Asunto(s)
Mifepristona , Embarazo Ectópico , Embarazo , Femenino , Humanos , Mifepristona/uso terapéutico , Estudios Retrospectivos , Metotrexato , Embarazo Ectópico/tratamiento farmacológico , Resultado del Tratamiento , Gonadotropina Coriónica Humana de Subunidad beta
16.
Plant Cell ; 35(4): 1241-1258, 2023 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-36648110

RESUMEN

In Arabidopsis thaliana, female gametophyte (FG) development is accompanied by the formation and expansion of the large vacuole in the FG; this is essential for FG expansion, nuclear polar localization, and cell fate determination. Arabidopsis VACUOLELESS GAMETOPHYTES (VLG) facilitates vesicular fusion to form large vacuole in the FG, but the regulation of VLG remains largely unknown. Here, we found that gain-of-function mutation of BRASSINOSTEROID INSENSITIVE2 (BIN2) (bin2-1) increases VLG abundance to induce the vacuole formation at stage FG1, and leads to abortion of FG. Loss-of-function mutation of BIN2 and its homologs (bin2-3 bil1 bil2) reduced VLG abundance and mimicked vlg/VLG phenotypes. Knocking down VLG in bin2-1 decreased the ratio of aberrant vacuole formation at stage FG1, whereas FG1-specific overexpression of VLG mimicked the bin2-1 phenotype. VLG partially rescued the bin2-3 bil1 bil2 phenotype, demonstrating that VLG acts downstream of BIN2. Mutation of VLG residues that are phosphorylated by BIN2 altered VLG stability and a phosphorylation mimic of VLG causes similar defects as did bin2-1. Therefore, BIN2 may function by interacting with and phosphorylating VLG in the FG to enhance its stability and abundance, thus facilitating vacuole formation. Our findings provide mechanistic insight into how the BIN2-VLG module regulates the spatiotemporal formation of the large vacuole in FG development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/fisiología , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Células Germinativas de las Plantas/metabolismo , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Fosforilación , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Vacuolas/metabolismo
17.
Curr Protoc ; 2(12): e599, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36468904

RESUMEN

Meiosis involves the replication of nuclear chromosomes in a parent cell, followed by two successive nuclear divisions to produce haploid spores, which differentiate into the gametophyte generations that produce the egg and sperm in plants. Meiotic recombination or crossover (CO) is a hallmark of meiosis that allows shuffling of genetic information between homologous chromosomes (homologs), thereby giving rise to genetically diverse progeny cells and, ultimately, individuals in the progeny; this opens vast opportunities for genetic differentiation and hence speciation. Meiotic COs also ensure the formation of bivalents and fidelity of their equal segregation. Therefore, mechanisms that regulate meiotic recombination have been extensively studied in multiple species. Several approaches have been developed to observe or estimate the frequency of CO, in which CO can be visualized and analyzed cytologically by estimating the number of chiasma (plural chiasmata), a position where non-sister chromatids exchange genetic material between homologs. Furthermore, one CO event might influence the occurrence of another one nearby, along a chromosome; this is known as CO interference. Over the past decades, visualizing CO events and measuring CO interference have contributed greatly to our understanding of the regulatory mechanisms of meiotic recombination. Here, we describe protocols to estimate the number of chiasmata and CO interference in Arabidopsis using cytological methods involving chromosome spreads and immunostaining. Specifically, we describe how chromosome spreads can be used to estimate the number of chiasmata based on the conformations of metaphase I bivalents and provide a revised acid-based quick immunostaining assay that permits high-throughput and quantitative digital estimation of the relative distance between adjacent interference-sensitive CO foci at diakinesis. These methods can be easily established or modified, if necessary, for studying meiotic recombination in other plants and crops. © 2022 Wiley Periodicals LLC. Basic Protocol 1: Estimation of the number of chiasmata per nucleus based on metaphase I bivalent conformations Basic Protocol 2: A chromosome spread-based immunostaining method for relative distance analysis of adjacent interference-sensitive CO foci at diakinesis in Arabidopsis meiocytes.


Asunto(s)
Arabidopsis , Intercambio Genético , Humanos , Masculino , Arabidopsis/genética , Semen , Meiosis/genética , Metafase
18.
Proc Natl Acad Sci U S A ; 119(43): e2213540119, 2022 10 25.
Artículo en Inglés | MEDLINE | ID: mdl-36260743

RESUMEN

Heterochromatin is essential for genomic integrity and stability in eukaryotes. The mechanisms that regulate meiotic heterochromatin formation remain largely undefined. Here, we show that the catalytic subunit (POL2A) of Arabidopsis DNA polymerase epsilon (POL ε) is required for proper formation of meiotic heterochromatin. The POL2A N terminus interacts with the GHKL adenosine triphosphatase (ATPase) MORC1 (Microrchidia 1), and POL2A is required for MORC1's localization on meiotic heterochromatin. Mutations affecting the POL2A N terminus cause aberrant morphology of meiotic heterochromatin, which is also observed in morc1. Moreover, the POL2A C-terminal zinc finger domain (ZF1) specifically binds to histone H3.1-H4 dimer or tetramer and is important for meiotic heterochromatin condensation. Interestingly, we also found similar H3.1-binding specificity for the mouse counterpart. Together, our results show that two distinct domains of POL2A, ZF1 and N terminus bind H3.1-H4 and recruit MORC1, respectively, to induce a continuous process of meiotic heterochromatin organization. These activities expand the functional repertoire of POL ε beyond its classic role in DNA replication and appear to be conserved in animals and plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Animales , Ratones , Adenosina Trifosfatasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Heterocromatina/genética , Histonas/metabolismo
19.
Proc Natl Acad Sci U S A ; 119(41): e2208441119, 2022 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191225

RESUMEN

Meiotic recombination is initiated by the SPORULATION 11 (SPO11)-triggered formation of double-strand breaks (DSBs) that usually occur in open chromatin with active transcriptional features in many eukaryotes. However, gene transcription at DSB sites appears to be detrimental for repair, but the regulatory mechanisms governing transcription at meiotic DSB sites are largely undefined in plants. Here, we demonstrate that the largest DNA polymerase epsilon subunit POL2A interacts with SU(VAR)3 to 9 homologs SUVH2 and SUVH9. N-SIM (structured illumination microscopy) observation shows that the colocalization of SUVH2 with the meiotic DSB marker γ-H2AX is dependent on POL2A. RNA-seq of male meiocytes demonstrates that POL2A and SUVH2 jointly repress the expression of 865 genes, which have several known characteristics associated with meiotic DSB sites. Bisulfite-seq and small RNA-seq of male meiocytes support the idea that the silencing of these genes by POL2A and SUVH2/9 is likely independent of CHH methylation or 24-nt siRNA accumulation. Moreover, pol2a suvh2 suvh9 triple mutants have more severe defects in meiotic recombination and fertility compared with either pol2a or suvh2 suvh9. Our results not only identify a epigenetic regulatory mechanism for gene silencing in male meiocytes but also reveal roles for DNA polymerase and SUVH2/9 beyond their classic functions in mitosis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/metabolismo , Roturas del ADN de Doble Cadena , ADN Polimerasa II/metabolismo , N-Metiltransferasa de Histona-Lisina , Meiosis/genética , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA